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SMALL OSCILLATIONS OF AN ORTHOTROPIC CYLINDRICAL SHELL 
CONTAINING A LIQUID COVERED BY RIGID ENDPLATES* 

R.A. MARCHUK and R.N. SHVETS 

The oscillation problem for a Timoshenko-type orthotropic cylindrical shell contain- 

ing a liquid covered by two movable, rigid endplates is considered. The problem is 

solved by decomposing the required function in a modified Fourier series. Numerous 

papers/l- 6/havebeen devoted to the study of oscillations of a finite cylindrical 

shell containing a liquid bounded by a single endplate. The case of a short shell 

with two endplates has also been investigated in /7--l/. Here the motion of the 

shell is described by classical equations, and the shell material itself is assumed 

to be isotropic. 

1. An orthotropic cylindrical shell of length 21, and radius R is covered at its edgesby 

absolutely rigid plane endplates and entirely filled with an acoustic liquid. Within the shell 

pressure oscillates according to the law q,eio~*. In a dimensionless cylindrical coordinate 

system r,e,x, whose x-axis coincides with the shell axis and whose origin is placed at the 

center of the shell, axisymmetric motion of the shell may be described by two differential 

equations relative to the displacement components u, w /12-14/: 

(1.1) 

(1.2) 

El = k’G,s (i - v12v2,) ’ 
El 

cl2 = p1 (1 - YUVZL) 1 cp=$ 

Here 'pl is the velocity potential describing the motion of the liquid; t time; p0 and p1 

density of liquid and material of the shell, respectively; vm and vtl Poisson coefficientsof 
the orthotropic material of the shell; 2h thickness of shell; k’ shear coefficient; and E,, Ez 
Glz tensile and shear moduli of elasticity. The modulus G,, serves for taking into account 

the anisotropy of the elastic properties across the thickness of the shell. 

The dimensionless velocity potential cp of an acoustic liquid satisfies the wave equation 
(cO is the speed of sound in a liquid) 

(1.3) 

A continuous motion condition must hold on the wetted surface of the shell, and hinge 
support conditions at the edges of the shell: 

acp au, 
ar r=l=az; w=o, $=o (x=fZ, l=$) (1.4) 

In addition, at the edges of the shell it is necessary to take into account the transfer 
of pressure to the end faces from the liquid, the inducing pressure, and the force of inertia 
of the endplates. This condition has the form (h, and IJ* are the thickness and densityofthe 
material of the endplates) 
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g+ vzlw + Q -$ - qeiaT ++.%grdr=o (x=+1) (1.5) 

Besides these conditions, there is also a condition specifying continuous motion of the 

liquid on the endplates, which in the present case may be written as an integral 

Zc’-$rdr=$ (x=+1) 
b 

(1.6) 

The last equality indicates that the instantaneous flow rate of the liquid across each 
extreme section of the shell is equal to the volume freed by the correspondingendplate inthis 

time. Such a replacement of the exact condition by an integral condition will not lead to 
major errors /15/. 

2. To solve the problem, we represent the displacement components of the points of the 

shell in the form (AI,, are unknown coefficients) 

U = lJ(z)e'~~ (2.1) 

u, = i 5 Aj,Ej (aj,,x)eior (2.2) 
j=l n=l 

El (x) = cos I, Es (5) = sin z, al,=+-(n-0.5), a%=+ n 

In Sect.3 we will show that the decomposition (2.2) is valid. 

In such a formulation, the last two boundary conditions in (1.4) are satisfied indentical- 

1Y. Substituting expressions (2.1) and (2.2) in (l.l), we obtain a second-order ordinary dif- 

ferential equation that may be used to determine the function lJ (5). Its solution may be 

written in the form 
2 m 

U (m) = D1 sin (a) + DZ cos (0~) + ~21 
Kz 

“j, Ajntj’ (aj,,x) (0 # aj,) (2.3) 
j=l n=l 3, 

2 m 

U (5) = DI sin (OX) + Dz cos (OX) - + Aims& (OX) + ~z1 r, JT,O 2 AjnEj’ (aj,x) 
j=* n=* 

(0 = aim) 

Here xj,, = djna - 0'; D, and D, unkown constants, with the "prime" denoting different- 

iation with respect to the indeoendent variable, while the zero subscript in the final sum 

denotes that jf i and nf m simultaneously. 

The wave equation (1.3), first boundary condition (1.4) and boundedness conditiononthe 

axis will be satisfied if the velocity potential of the liquid is used in the form 
cc 

up = 2 x Ajn$ (f3jnr) Ej (aj,z) ioeioT, fij,’ = Qjn2 - f  

j=l n=l 

(2.4) 

(Jn and 1, are n-th order Bessel functions of a real and imaginary variable). In the special 

case when pj,,a = 0, the corresponding decomposition coefficient in (2.2) Aj, = 0. 
If the boundary conditions (1.5) and (1.6) are satisfied, we can then find a relation 

between the coefficients D,, D,, A,,,, and A,,,. Three such cases are possible: 

lo. o#am(j = 1, 2) 

Dj=$$‘j 2 (- l)naj,,di,,Aj,, 
n=1 

(2.5) 

A m = 6&11, - ?)_qn; q1 = 4% = q, qfi = 0 (ji = 3, 4, . . .) 
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2O. o=alp 

Substituting the resulting expressions for the displacement components of the points in 
the shell and the velocity potential of the liquid in light of (2.5) in the motion equationof 
the shell (1.2) and applying the Bubnov -Galerkin method to this equation,weobtainaninfinite 
system of linear algebraic equations for the decoupositioncoefficients A,, or Al,: 

&_qelo* ‘- 
a13 

- ke2) q - asqs (s # PI w =i alp) 

f (ad Aas i- 2 7 z: 
?Z=l 

(- l)“+rA,* F ds = 
(R/P) 

(2.6) 
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If we set q=O, a solution of the frequency and modeshape problem of the natural oscil- 
lations of a cylindrical shell covered by rigid endplates and completely filled with a liquid 

may be obtained from the above solution. In this case, the equation for determiningthe eigen- 
frequencies o may be represented in the form of an infinite determinant (& istheK.ronecker 

symbol) 

det (;U1,,s) = 0 (n, s = 1, 2, . .) (2.7) 

When o = Cljp , the coefficients Al,,, may be written down without any difficulty.The solu- 

tion was studied by means of a numerical method. 

The computations were performed for the case of an isotropic (y12= Ye,= V= 0.3; E,= 2G,,(l$ 

v); m = 1) and orthotropic (V~~ = 0.3; %'11 = 0.15; E, = 4OG,,; nz = 0.5) shell for the following general data: 
p = 0.5; k’ = 516; p = pa/p, = 117.8; 21 = Z&/R = 4: Q = h,p, 1 (Up) = 2. In calculating the natural oscil- 
lations, the coefficients of the decomposition were normalized in such a way that A11 ~-1. A 
system of ten equations was solved numerically. The frequencies of the natural oscillations 
were found to correct within 10P3. 

Table 1 

The first six eigenfrequencies are presented in the accompanying Table1 forthe case of 

isotropic and orthotropic shells filled with a compressible liquid. In the last row may be 

found the dimensionless specific mass of the endplate Q= 4. From an analysis of the numerical 

results, it follows that the orthotropic material of the shell has little effect on the first 

eigenfrequency, but substantially changes subsequent frequencies. The mass of the endplates 
noticeable changes the second eigenfrequency. Clearly, at this frequency longitudinal oscil- 

lations of the shell predominate. 
In the accompanying Fig.1 may be found an example show- 

ing how the amplitude of the excess liquid pressure JJ = --p x 

c?cp/dr varies in the case of a shell with length21= 4 at s= 1 
along the radius r, and at r= 1 along the I -axis. The stud- 

ies were conducted at a frequency of the induced oscillations 

0 = 0.1. The solid curves correspond to an orthotropic shell, 

and the dot-and-dash curves, to an isotropic shell. 

The above analysis demonstrates that the pressure near 

the walls of the shell is always greater than the pressure 

along the axis, increasing whenever the frequency of the in- 
duced oscillations approaches the eigenfrequency of the system. 

The decomposition coefficients Aj,(j = 1,2) in the caseofboth 

the naturalandinducedoscillations rapidly decrease with in- 

creasing ordinal number n, a result which indicates that the 

solution has a high degree of convergence. 

3. Theorem. If the function f(r) with period Zrc is 

piecewise-differentiable inthe closed interval [--n, n], and vanishes at the edges ot the inter- 

val, it may be expanded in a series of the form 

which converges at every point r,~ I--n, n] 

so (IO) = -+ 

As the function is continuous at the point 

value of the function at this point. 

and has the sum 

(3.1) 

[f (50 + 0) + f (%I - w (3.2) 

zO, the sum of the series (3.1) is equal to the 
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Proof. It may be verifed that the system of functions E*s(n - 1/2)z, sin nz fn = 1, 2, . . .) 
is orthogonal on the closed interval I-%x], and that the coefficients of the expansion a,, and 

b, are related to f(s) as 

an=-& 5 r(~)~s,(n--+)udu, b,=+ S j(U)sin.u& (3.3) 
--n --x 

It is self-evident that the theorem holds at the endpoints of the interval &=+n). Let 
us prove it for an arbitrary point .QE]-~,IT[. The partial sum of the series (3.1) at the 
point z0 is equal 

SI,(z,) = 2 [~+,cos(n -O.S)s, + b,, sin nso] 
?l=l 

(3.4) 

Substituting the values of the coefficients a, and b, from (3.3) in (3.4) and taking in- 
to account the identities 

we obtain 

(3.51 

(3.6) 

Performing the substitution t= II--Z~ and t= u+ x0 intheintegrand (3.6) and bearing in 
mind the fact that the function f(z) is periodic, we obtain 

(3.7) 

Below we will require the values of certain integrals that may be obtained from the iden- 
tities in (3.5): 

T +++jt dt=n 
2sinIj2 (3.8) 

-z 

(3.9) 

We may verify that (3.91 is valid if we set I= f in the MacLaurin series for the func- 
tion arc tg I, 

From (3.8) and (3.9), and in light of the fact that the integrand functions are even, we 
find that 

sinkt+ sin(k++)t dt_~ 

2 sin f/2 
(3.10) 

0 

Multiplying equalities (3.10) and (3.21 andsubtractingthe result obtained from (3.7),we 
find 

n 

S,(&-&(s~)=-&- p,(f)sinktdt=& 
s 

(3.11) 
0 
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n--x, 
1 

s c g, (t) sin kt dt + E 
f hl+ 0) + I (IO - 0) 

; 
4x 

g1 (t) = 
c 
f(%+t) -_f%lfO) 

t 
_ /(20--t) -/f%-0) 

-t 1 ti2 -ziqr 

g, (t) = [f (t - IO) + f (- t - ro)l 
cm (t/3) - 1 
2 sintl2 

1 
g, (1) = f (t - Zo) + f c-t - Z”)> gr (t) -1.f (- t - ,101 -1. f(f + roll sin 

The functions g1,g2 and g3 are piecewise-continuous on the interval [O,n], since the func- 
tion f(t) is piecewise-continuous. The behavior of these functions as t*+ 0 remains anopen 
question. It may verified that 

lim g, (1) = f' (I,! + 0) - f' (.Q - O), lim g, (t) = 0, lim gs (1) = f (-za + 0) + f (--I~ - O), t - + 0 

The function g&(t) will be piecewise-continuous on the interval [n,n- z,l for arbitrary 
I0 E l-s, n[. 

If we use the Riemann theorem /16/, we find from (3.11) that as k-m, 

lim S, (so)- \‘,, ( fo) = (1 
h-r, 

The theorem is proved. 

In the case of an arbitrary interval I-1, d,we have 

in 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

The even function may be expanded in a series only in cosines, while the odd function, 

sines. 
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